Finitely curved orbits of complex polynomial vector fields.
نویسنده
چکیده
This note is about the geometry of holomorphic foliations. Let X be a polynomial vector field with isolated singularities on C2. We announce some results regarding two problems: 1. Given a finitely curved orbit L of X, under which conditions is L algebraic? 2. If X has some non-algebraic finitely curved orbit L what is the classification of X? Problem 1 is related to the following question: Let C [symbol: see text]C2 be a holomorphic curve which has finite total Gaussian curvature. Is C contained in an algebraic curve?
منابع مشابه
Complex polynomial vector fields having a finitely curved orbit
In this paper we address the following questions: (i) Let C ⊂ C be an orbit of a polynomial vector field which has finite total Gaussian curvature. Is C contained in an algebraic curve? (ii) What can be said of a polynomial vector field which has a finitely curved transcendent orbit? We give a positive answer to (i) under some non-degeneracy conditions on the singularities of the projective fol...
متن کاملSymmetric Periodic orbits Near heteroclinic Loops at Infinity for a Class of Polynomial Vector Fields
For polynomial vector fields in R, in general, it is very difficult to detect the existence of an open set of periodic orbits in their phase portraits. Here, we characterize a class of polynomial vector fields of arbitrary even degree having an open set of periodic orbits. The main two tools for proving this result are, first, the existence in the phase portrait of a symmetry with respect to a ...
متن کاملExistence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11
In this article, a systematic procedure has been explored to studying general Zq-equivariant planar polynomial Hamiltonian vector fields for the maximal number of closed orbits and the maximal number of limit cycles after perturbation. Following the procedure by taking special consideration of Z12-equivariant vector fields of degree 11, the maximal of 99 closed orbits are obtained under a well-...
متن کاملOn Muldowney's Criteria for Polynomial Vector Fields with Constraints
We study Muldowney’s extension of the classical BendixsonDulac criterion for excluding periodic orbits to higher dimensions for polynomial vector fields. Using the formulation of Muldowney’s sufficient criteria for excluding periodic orbits of the parameterized vector field on a convex set as a quantifier elimination problem over the ordered field of the reals we provide case studies of some sy...
متن کاملSymmetric periodic orbits near a heteroclinic loop
In this paper we consider vector fields in R that are invariant under a suitable symmetry and that posses a “generalized heteroclinic loop” L formed by two singular points (e and e−) and their invariant manifolds: one of dimension 2 (a sphere minus the points e and e−) and one of dimension 1 (the open diameter of the sphere having endpoints e and e−). In particular, we analyze the dynamics of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Anais da Academia Brasileira de Ciencias
دوره 79 1 شماره
صفحات -
تاریخ انتشار 2007